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Abstract
Objectives: To review exosomes in aging and age-associated diseases.
Design: A review study.
Participants: Aged animals.
Interventions: Exosome treatment.
Outcome measures: The occurrence of age-associated diseases, aging skin, cognition, and 
cardiac dysfunction.
Results: Exosomes are secreted by various cell types and comprise proteins, lipids, functional 
messenger RNAs, cytokines, growth factors, different noncoding RNA, micro-RNAs, and other 
bioactive substances. These nanoparticles are implicated in several physiological processes, 
including intercellular communication, cell migration, angiogenesis, and anti-tumor immunity, 
and have gained major interest in regenerative medicine. Furthermore, several studies have 
demonstrated the potential roles of exosomes in age-associated diseases such as aging skin, 
cognition, Alzheimer’s disease (AD), Parkinson’s disease (PD), and osteoarthritis (OA).
Conclusions: We summarized various mechanisms of exosomes in the treatment of age-related 
diseases, including OA, PD, AD, and aged skin. These vesicles can be of efficient medicinal 
value for aged-associated disease therapy in preclinical trials. Further clinical trials are needed, 
but the majority of the literature suggests research directions that may provide new treatment 
approaches and strategies for clinical application.
Keywords: Aging, Exosome, Neurodegenerative diseases, Brain, Skin, Osteoarthritis

Article History:
Received: July 5, 2023
Accepted: September 27, 2023
ePublished: October 30, 2023

*Corresponding Author:
Leila Hosseini, 
Email: leilahosseini337@
gmail.com

Introduction
As the world population is aging, it is a fascinating 
topic for researchers around the world. Aging is related 
to a progressive diminution in the effectiveness of 
mechanisms that preserve homeostasis of the body and 
tissues.1 It is a major risk factor for several diseases such as 
cardiovascular disease, aging skin, cognition dysfunction, 
and the like as well as the reduction in the quality of life 
among elderly people.2 It is well known that oxidative 
stress and inflammation are important contributors 
to aging.3 At present, there is no effective therapeutic 
intervention that can lessen age-related diseases and 
also slow down the aging process. The development of 
therapies that postpone aging and the progression of age-
associated diseases will be the main implication for the 
betterment of public health.

Exosomes are nanometer-sized membrane-bound 
extracellular vesicles secreted by different cell types 
for intercellular communication and can be detected 
in biological fluids in pathological and physiological 
contexts.4 They are found in numerous biological 
fluids, including serum, saliva, breast milk, serum, 

cerebrospinal fluid, and the like. Exosomes carry cargo 
molecules from their cell of origin, including proteins, 
mRNAs, microRNA, and lipids,5-7 and are delivered to the 
surrounding cells or carried to the distal cells. Owing to 
their active cargo content, they reprogram the recipient 
cells. Lately, due to their excellent characteristics, they 
have also been regarded as a suitable delivery vehicle 
for medicinal products. Furthermore, exosomes have a 
lipidic bimolecular structure similar to the cell membrane, 
thereby enabling them to be loaded efficiently with 
hydrophobic and hydrophilic drugs.8

A large body of studies has demonstrated that 
exosomes play an important role in the treatment of a 
wide range of diseases including, nerve injury,9 stroke,10 
neurodegenerative diseases,4 aging,11,12 and heart diseases.13 
In addition, evidence has shown that after intravenous 
injection, exosomes are mostly distributed in vascular-
rich organs and organs related to the reticuloendothelial 
system such as the kidneys, spleen, lungs, and liver.14 
Because of the dysregulation of exosomes in diseases 
and their role in delivering drugs to target cells, they 
are of therapeutic interest. This review summarizes the 
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application and possible mechanism and function of 
exosomes in aging and some age-related diseases such as 
Alzheimer’s disease (AD), Parkinson’s disease (PD), aged 
skin, and osteoarthritis (OA) and reveals the current and 
the latest research progress. 

Methods
PubMed, Google Scholar, and Scopus databases were 
searched to recognize publications from peer-reviewed 
journals using several keywords and their MeSH terms, 
including, ‘aging’, ‘exosome’, ‘diseases’, ‘Alzheimer’s 
disease’, ‘Parkinson’s disease’, and ‘elderly’. The search 
was conducted on April 1, 2023, and there was no search 
filter on publication type. In addition, studies written in 
English were selected, and reference lists of all relevant 
publications were manually selected to identify advanced-
qualified studies.

Results
Molecular Mechanisms of Aging and Age-Related 
Diseases
As fertility reduces and life expectancy rises, the 
proportion of individuals aged 60 and over increases. 
According to UNESAS, about 900 million people are aged 
60 and over worldwide, and this number will reach 21. 
5% of the world population by 2050, and the prevention 
of aging is a common problem.15 Aging is known as 
the most important driving factor for various diseases 
and finally death. With the dramatic increase in life 
expectancy in recent decades, age-related diseases such 
as AD, frontotemporal dementia, cardiovascular diseases, 
skin diseases, PD, and other diseases have become 
one of the most serious global public health problems. 
High generation of reactive oxygen species (ROS), 
mitochondrial damage, neuroinflammation, telomere 
shortening, and abnormal homocysteine metabolism are 
crucial for the aging process and age-associated diseases. 
According to growing evidence, oxidative stress rises 
with age due to ROS accumulation and is accompanied 
by lipids, nucleic acids, proteins DNA, carbohydrates 
damage, and a decrease in cell repair mechanisms, 
eventually leading to the impairment of the epigenetic 
state of the cell 16. In addition, mitochondrial dysfunction 
can lead to respiratory chain deficiencies, increased 
production of ROS, decreased adenosine triphosphate 
levels, and promoted apoptosis and inflammation, 
resulting in numerous age-related diseases.17 With 
advanced age, the expression of autophagy genes such as 
ATG5, ATG7, and BECN1 declines, and the stimulation 
of autophagy increases the healthy lifespan in various 
model organisms such as rodents and primates.18 It was 
found that neurodegenerative diseases are correlated to 
defects in autophagy and mitochondria. Autophagy is a 
necessary process to remove abnormal protein aggregates 
in cells. It also maintains protein balance. Some studies 
found that autophagy problems happen in the early 
stages of AD. Autophagy is complicated in the generation 

and metabolism of β-amyloid (Aβ) and also affects the 
phosphorylation status and clearance of tau. Therefore, 
its malfunction causes the progress of AD.19 Moreover, 
the overexpression of α-synuclein protein in PD has been 
thought to impair autophagy.20

Exosomes
Exosomes are tiny extracellular vesicles that are 30 to 150 
nanometers in diameter and are released from most cells, 
including mast cells, lymphocytes, neurons, and dendritic, 
epithelial, and endothelial cells during physiological and 
pathological conditions.21,22 Exosomes spread throughout 
the body and are found in blood, saliva, urine, and breast 
milk. These vesicles have a fluid lipid bilayer membrane 
and contain protein, nucleic acid, and lipids and are key 
regulators of many biological settings.23 These extracellular 
vesicles have different sizes. Large exosomes are 90 to 120 
nm, and small exosomes are 60 to 80 nm in diameter. 
In addition, in recent years, a group of non-membrane 
nanoparticles called exomers has been discovered with a 
diameter of less than 35 nm.24 Exosomes in the plasma 
membrane are secreted into the extracellular environment 
after binding with multivesicular bodies.25 Consequently, 
exosomes join neighboring cells by endocytosis or are 
degraded via lysosomes.26,27 Exosomes are involved 
in multiple biological processes, including cell-to-cell 
communication, autophagy, lysosomal exocytosis,25 
crosstalk between organs, intercellular signaling, 
inhibition of apoptosis,28 cleansing of cell waste products, 
maintaining cell homeostasis in an optimal level, the 
modulation of the immune and inflammatory systems, 
and angiogenesis; moreover, exosomes have the potential 
to diagnose and prognosis a wide range of diseases.25,28,29 
The use of exosomes in clinical trials has advantages 
such as stability for a long time, easy internalization, 
and operation in recipient cells.28 Exosomes can be 
stored, they are unlikely to be rejected by the immune 
system, they have a low risk of forming tumors and 
clots in blood vessels, and they have no potential for 
toxicity. Furthermore, it was identified that microRNAs 
(miRNAs) carried by exosomes activate restorative and 
protective pathways in recipient cells by inducing genetic 
instructions30-32 (Figure 1).

Discussion 
Effects of Exosomes on Aging and Age-associated Diseases
Aging
Delayed neurocognitive recovery (dNCR) is a rampant 
complexity of the central nervous system in aged 
patients after surgery, leading to cognitive impairment, 
memory and inattentiveness disturbances, and also 
increased morbidity and mortality in sufferers in 30 days 
following operation.33 Liu et al revealed that exogenous 
mesenchymal stem cells (MSCs)-exosome downregulates 
the levels of ROS, malondialdehyde, Fe2 + , and P53, 
whereas it rises glutathione, GPX4, and SLC7A11 levels in 
dNCR-aged mice.34 In addition, they found that treatment 
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with exosomes derived from MSCs ameliorates cognitive 
dysfunction by inhibiting ferroptosis in the hippocampus 
of dNCR-aged animals by activating the Sirt1/Nrf2/HO-1 
signaling pathway. The mentioned effects of MSCs-
exosome on dNCR-aged animals were prevented by the 
selective Sirt1 inhibitor.34

The previous reports suggested that long non-
coding RNA (lncRNA) metastasis-associated lung 
adenocarcinoma transcript (MALAT1) regulates cell 
cycle and inflammation, and its expression is reduced 
with age.35 Furthermore, umbilical cord MSC-derived 
exosomes attenuate age-induced heart dysfunction via 
an exosome/lncRNA MALAT1/NF-κB/TNF-α signaling 
pathway.36

It was reported that levels of mmu-miR-126-5p and 
mmu-miR-466c-5p in lungs, liver, and exosomes are 
downregulated, while levels of mmu-miR-184-3p and 
mmu-miR-200b-5p raised in exosomes in aged mice 
compared to young animals. The administration of young 
exosomes could reverse the mmu-miR-126-5p level in the 
lungs and liver in old animals.37 Additionally, treatment 
with young exosomes could result in a decrease in the 
level of aging-associated biomarkers such as p16Ink4A, 
MTOR, and IGF1R in the lungs and also in the liver of 
aged mice. Furthermore, telomerase-related genes (Men1, 
Mre11a, Tep1, Terf2, Tert, and Tnks) were increased 
in the liver of aged animals following the injection of 
young exosomes.37 It has been shown that telomeres are 
shortened when telomerase activity in human somatic 
cells declines with aging, and it was found that the 
transfection of a telomerase gene to aged animals delays 
aging and increases longevity.38

The intrabursal injection of exosomes derived from 
human umbilical cord MSCs into old mice revealed their 
rescuing effects on the age-related reduction in fertility 
by increasing oocyte generation and improving oocyte 
quality.39 Several studies have found that exosomes secreted 
by MSCs promote neurogenesis in the subventricular 
zone of the lateral ventricles and the subgranular zone 
of the hippocampal dentate gyrus and reduce cognitive 
impairment correlated with stroke, traumatic brain 
injury, and PD.40,41 Zhang et al reported that exosomes 
from young MSCs translocate exosomal miR-136 and 
reduce apoptotic peptidase activators, thereby enhancing 
the activity of aged MSCs and increasing myocardial 
repair function.42

Aged Skin
The number and proliferation of dermal fibroblasts 
alter with age which diminishes collagen synthesis and 
repair, and the existing skin matrix degradation by 
matrix-degrading enzymes accelerates, decreasing the 
regenerative capacity of skin.43 Aging results in slowed 
wound healing,44 which is a dynamic biological process 
that requires the interaction of different cell types and 
cellular activities (e.g., differentiation, migration, and 
proliferation) and the synthesis of extracellular matrix 
proteins.45,46 Age-associated defects in the repair wound 
are related to decreased myofibroblasts and extracellular 
matrix deposition dysfunction.46 MSC exosomes have 
numerous therapeutic effects on the skin. A study 
demonstrated that exosomes transfer miR-125b from 
young into aged fibroblasts and promote the migration 
and transition of the fibroblast to thwart aging via the 

Figure 1. Schematic Figure of Exosome. Note. MVBs: Multivesicular bodies. These vesicles are released from MVBs in the vesicle trafficking process
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inhibition of sirtuin 7.47 Oh et al mentioned that exosomes 
derived from human iPSCs improve skin aging caused 
by UVB irradiation by accelerating the proliferation 
and migration of human dermal fibroblasts (HDFs), the 
inhibition of overexpression matrix metalloproteinases 
-1/3, and also the restoration of expression of the collagen 
type I in old HDFs.48 Chernoff conducted a pilot study on 
40 patients with aging skin. This study has demonstrated 
that human placental mesenchymal-derived exosomes 
could improve the tone, quality, and clarity of skin 
and also reduce wrinkles, pores, pigment, and oiliness 
compared to the control group.49 Moreover, there were no 
allergic and hypersensitivity reactions or adverse events in 
all groups.49

Alzheimer’s Disease
AD is characterized by cognitive impairments, the loss 
of memory, and personality changes taking place with 
advancing age.50 AD is neuropathologically defined by 
the accumulation of extracellular senile Aβ plaques 
and intracellular neurofibrillary tangles, consisting of 
hyperphosphorylated tau proteins.51 Several studies 
showed that exosomes derived from stem cells have 
therapeutic effects in AD. It was found that exosomes 
derived from human umbilical cord-derived MSCs 
attenuate neuroinflammation and boost the degradation 
of Aβ.52 Moreover, the intravenous injection of MSC-
exosomes with neprilysin and insulin-degrading enzyme 
(zinc metallopeptidase) activity decreased the deposition 
of Aβ plaques in AD transgenic mice.53 Exosomes isolated 
from adipose-derived stem cells exerted significant 
neuroprotective effects on AD mice through decreasing 
the Aβ1-42/1-40 ratio, Aβ levels, and neuronal cell apoptosis, 
as well as increasing neurite outgrowth.54 Furthermore, 
combined curcumin and exosomes inhibited tau 
phosphorylation and activated the GSK-3/AKT signaling 
pathway, to avoid neuronal death and relieve symptoms.55

Parkinson’s Disease
PD is a chronic neurodegenerative age-related disorder 
affecting the motor system in the population aged over 70 
years. PD cases broadly fall into two categories: sporadic 
and familial with the same pathological hallmarks such 
as the dopaminergic neurons loss in the substantia nigra 
pars compacta and the inclusions of Lewy bodies and 
neurites of surviving neurons in the midbrain.56 A study 
has shown that exosomes from stem cells derived from 
the dental pulp of human exfoliated deciduous teeth 
(SHEDs) inhibit 6-hydroxy dopamine-induced apoptosis 
in dopaminergic neurons.57 In addition, the intranasal 
delivery of exosomes from SHEDS could ameliorate 
dyskinesia and the loss of dopaminergic neurons and 
normalize tyrosine hydroxylase expression in the striatum 
and substantia nigra in PD rats.58 Furthermore, the 
intracerebroventricular injection of exosome-mediated 
delivery of antisense oligonucleotides-4 (one antisense 
oligonucleotides targeting human α-syn sequence) 

to the brain of PD mice significantly diminished the 
expression of α-syn and aggregation, improved locomotor 
functions, and also ameliorated dopaminergic neuron 
degeneration.59

Osteoarthritis
OA is a common and debilitating age-related joint 
disease. The pathology of OA is the result of synovial 
inflammation, cartilage degradation, subchondral 
bone sclerosis, and osteophyte formation, which are 
common with human aging. While there are many ways 
to treat OA, no single treatment has been successful in 
reversing its progression.60 Zhang et al proved the ability 
of MSC exosomes to repair OA. They found that MSC 
exosomes promoted temporomandibular joint repair and 
regeneration, suppressed pain, attenuated inflammation, 
and restored the matrix and overall joint homeostasis.61 
Exosomes derived from bone marrow MSCs can be 
endocytosed by chondrocytes. These exosomes have been 
shown to restore chondrocyte proliferation, promote 
extracellular matrix synthesis, and reduce knee OA pain.62 
Moreover, exosomes from healthy chondrocytes exhibited 
high biological activity in eliminating mitochondrial 
dysfunction and restoring the immune response by 
regulating M2 macrophage infiltration, thereby slowing 
the progression of the OA.63 Exosome-derived miRNAs 
exert potent therapeutic effects on in vitro and in vivo 
models of OA by promoting proliferation and inhibiting 
apoptosis.64 Furthermore, treatment with exosomes 
attenuated the senescence-related β-galactosidase activity 
in OA osteoblasts, oxidative stress, and the accumulation 
of γ H2AX foci, possibly due to the protective effects on 
mitochondria.65 The effects of exosomes on age-associated 
diseases are summarized in Table 1.

Conclusions
Studies suggested the therapeutic potential of exosomes 
in aging and some of age-related diseases through various 
molecular mechanisms and pathways. Exosomes play 
essential roles in intercellular communication between 
donor and recipient cells by delivering proteins and RNAs. 
These small extracellular vesicles emerge as a therapeutic 
agent for regenerative medicine because of their roles in 
anti-inflammatory outcomes, wound healing, and anti-
aging properties. Although there is a growing body of 
evidence on exosomes in aging and age-related diseases, 
principally focusing on pathophysiological mechanisms 
and treatment, most of the studies that yielded such results 
have been conducted using animal models not human 
models. Applying exosomes to technical and therapeutic 
safety issues is a main challenge. Cell culture conditions 
and storage methods can significantly impact exosome 
content and function and require the standardization of 
exosome extraction and storage. Moreover, the content, 
function, and activity of exosomes depend on the origin of 
the generating cells. Therefore, it is essential to optimize 
the source of exosome cells, including comorbidities, age, 
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and other factors associated with exosome-producing 
cells. On the other hand, researchers mainly focus on 
exosome functional aspect, and negative effects are 
seldom studied. Hence, more investigations into exosome 
functions will help develop novel strategies for protection 
against aging and age-related diseases. 
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