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Abstract
Objectives: The current review aimed to collect the updated clinical investigations of 
monoclonal antibodies (mAbs) in Alzheimer’s disease (AD) patients and assess the feasibility 
and efficacy of the immunotherapies with mAbs in AD. 
Design: A narrative review. 
Participants: People with AD. 
Outcome measures: The occurrence of AD.
Results: The failure of all attempts to cure AD during the previous decades by focusing on the 
pathogenic factors revealed that the pathophysiology of AD is multifaceted. In recent years, anti-
amyloid mAbs that exhibit beneficial effects in AD treatment have been marketed, and different 
studies have attempted to assess their effects. We investigated the current research to determine 
the potential benefits and outcomes of clinical trials of mAbs in AD cases in the review. 
Conclusions: This study concentrated on determining how these drugs affect AD pathology. It 
offers potential support for using anti-amyloid mAb immunotherapy for AD and evaluates the 
lessons learned from these clinical studies to conduct further research on the beneficial and 
harmful impacts of these therapeutic agents.
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Introduction
As a chronic neurodegenerative ailment, Alzheimer’s 
disease (AD) is characterized by cognition impairment, 
loss of memory, and disruption of synaptic pathways.1,2 
Over one hundred million individuals on the planet 
by the year 2050, and 10% to 30% of those who are 65 
or above will have AD.3 The disease has a considerable 
influence on the economy as a global public health 
crisis.2,4 The main primary hallmarks of the disease are 
neurofibrillary tangles and amyloid plaques caused by 
intracellular tau protein hyperphosphorylation.5 The 
amyloidogenic cascade and its peptide byproducts play 
a significant role in the start of AD.6 These peptides 
can accumulate in brain tissue and vasculature, leading 
to neuronal atrophy.7 Furthermore, AD development 
may potentially be influenced by inflammation.8 Scanty 
medicines, including non-competitive N-methyl-D-
aspartate receptor antagonists and acetylcholinesterase 
blockers, have been used clinically to treat AD to date.9 
Nevertheless, these medications can only partially relieve 
symptoms, and they cannot stop the course of AD. 
According to the amyloid cascade theory, removing brain 
plaques may treat AD and halt the progression of the 

illness. This idea has sparked the creation of cutting-edge 
medications to stop amyloid beta aggregation in neural 
tissue in recent years. However, earlier attempts to cure AD 
by focusing on pathogenic amyloid or tau have all failed, 
suggesting that the disease’s pathophysiology is more 
complicated and multifaceted.10 Anti-amyloid treatments 
are currently being discussed. Although the neural 
system has traditionally been regarded as an immune-
privileged location, there are mounting reports suggesting 
that innate immunity plays a significant role in AD’s 
pathogenesis.11 Additionally, recent discoveries regarding 
the pathogenesis and treatment of AD12 revealed that 
the brain contains accumulated amyloid and misfolded 
tau proteins which led to adaptive immune response. 
These discoveries may open up new treatment options 
for this disease, including active and passive anti-amyloid 
immunotherapies that clear brain amyloid deposits.13 
Aducanumab, lecanemab, gantenerumab, solanezumab, 
and bapineuzumab are only a few anti-amyloid mAbs 
being researched as a possible treatment for AD.13 These 
mAbs distinguish epitopes according to the precise 
portion and conformations of amyloid, and they differ 
in their selectivity for polymorphic variants.14 To reduce 
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the amount and toxicity of amyloid in the brain, mAbs 
target amyloid through the different metabolic cascades, 
removing or preventing the misfolded amyloid.13 These 
mAbs identify epitopes according to the amyloid, and 
they differ in their selectivity for polymorphic variants.13 
Clinical trial results to date seem to support the amyloid 
theory in the development of AD. However, there were 
numerous randomized control trial failures in the use 
of mAbs, leaving open the question of how amyloid-
targeting medications may be developed in the future. 
This study collected the updated clinical investigations of 
mAbs in AD patients and then assessed the feasibility and 
efficacy of the immunotherapies with mAbs in AD.

Methods
We used Google Scholar, PubMed, and ClinicalTrials.gov 
on June 15, 2023, with the combinations of the succeeding 
keywords such as “monoclonal antibody”, “Solanezumab”, 
“Aducanumab”, “Alzheimer’s”, “Lecanemab”, “BIIB037”, 
“sporadic”, “mild cognitive impairment”, and “passive 
immunotherapy”.

Results
By injecting amyloid antigens (active immunization) or 
anti-amyloid antibodies into the brain of AD patients, 
immunotherapeutic methods help amyloid be cleared 
from the brain of AD.13 Passive anti-amyloid antibody 
vaccination can improve the clearance of amyloid from 
the brain and plasma, resulting in a reduction in amyloid 
burden.15 

Late-phase trials with most mAbs have yielded 
disappointing results so far. Notwithstanding the dispute, 
aducanumab’s phase III research indicated somewhat 
encouraging results,16 which supports the idea of continuing 
to explore the anti-amyloid mAbs for the management of 
AD. Some of the drugs described in this study that help 
lower brain amyloid levels are still being tested in clinical 
studies.17

Unlike monomers or insoluble fibrils, soluble amyloid-
beta protofibrils have been found to be more hazardous 
to neurons, and lecanemab is a humanized monoclonal 
antibody that attaches to them with high affinity.18 In a 
Bayesian analysis of the 12-month alteration in score 
from a dose-finding phase 2b trial containing 854 
individuals with initial AD, lecanemab, and placebo 
failed to significantly differ from each other (primary 
endpoint).19 Lecanemab, however, was associated 
with less clinical decline than placebo on several 
measures, and investigations on 1.5-year-old individuals 
demonstrated time/dose-dependent amyloid clearance 
with the medication.20 Lecanemab was found to be 
effective when prescribed intravenously (10 mg/kg every 
two weeks) of amyloid-related imaging abnormalities 
(ARIAs).21 Moreover, lecanemab was tested for safety and 
effectiveness in patients with early AD as part of a phase 3 
experiment known as clarity AD.22 Lecanemab decreased 
amyloid indicators in early AD, moderately slowed 

cognitive and functional decline compared to placebo 
after 18 months; however, it was also led to negative side 
effects.23 Accordingly, lecanemab’s efficiency and safety in 
the treatment of early AD call for longer trials.

Via peptide aggregation separation and fibrillar 
amyloid clearance, the completely human amyloid 
immunoglobulin G1 antibody gantenerumab is intended 
to improve the clearance of amyloid plaques in the neural 
tissue.24 The human immunoglobulin G1 backbone 
stimulates microglial phagocytosis of aggregated amyloid 
via the Fc gamma receptor.25 Gantenerumab’s capability to 
attach to amyloid in ex vivo plaques was demonstrated by 
electron microscopy, and binding to amyloid in the brains 
of AD patients was exhibited by immunofluorescence 
staining.25 Postmortem analysis of AD brain tissue reveals 
that phagocytosis by the Fc gamma receptor and microglia, 
after degradation of lysosomes, removes fluorescent-
labeled gantenerumab linked to amyloid plaques.26 
The affinity of gantenerumab is highest for aggregated 
forms of amyloid and soluble oligomers. According to 
preliminary findings, binding to oligomers takes place 
and reduces their toxicity.27 According to the above-
mentioned evidence, gantenerumab inhibits the growth of 
aggregated amyloid and activates microglial phagocytosis, 
exerting two significant impacts on aggregated amyloid.25 
The effect of gantenerumab AD pathology and 
neurodegeneration is on amyloid, comprising time/dose 
-dependant diminutions in total tau levels in cerebrospinal 
fluid phosphorylated tau and reducing the neurofilament 
light chain and neurogranin28,29 (Figure 1).

Human immunoglobulin 1 (IgG1) mAb aducanumab 
can only target aggregated amyloid such as neuritic 
amyloid plaques and high molecular weight, but it 
does not target amyloid monomers.13 Furthermore, 
aducanumab exhibits a preference for parenchymal 
versus vascular amyloid in the brain.30 Anti-amyloid mAb 
therapies in AD in vivo models have been highly effective 
in reducing brain damage and enhancing cognitive 
abilities through microglial activation and amyloid 
aggregation prevention.31 It has been demonstrated 
that aducanumab has a definite therapeutic effect and 
completely eradicates amyloid from mouse brain tissue. 
Transgenic (tg) mice’s brains can absorb aducanumab, 

Figure 1. The Amyloid Theory Includes the Aβ Soluble Monomer/Oligomer 
Aggregation in Insoluble Amyloid Plaques and Fibrils
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which binds to parenchymal amyloid and inhibits both 
soluble and insoluble amyloids.32 Old tgAPPPS1-21 mice 
(an experimental model for AD) were given weekly doses 
of aducanumab (10 mg/kg) for four months, and the 
results demonstrated that aducanumab clearly reduces 
amyloid cytotoxicity and improves phagocytosis and cell 
survival.13

The injection of aducanumab combined with an 
ultrasound animal model of AD can improve cognition 
because ultrasound scans with intravenously administered 
microbubbles provisionally breach the blood-brain 
barrier, allowing aducanumab’s access to the brain and 
increasing brain levels of aducanumab.33 Aducanumab 
could reduce amyloid plaque in a concentration-
dependent way in Tg2576 mice as an AD model but 
not in 22-month-old animals, showing that it was more 
successful at preventing amyloid aggregation than at 
removing the pre-existing amyloid plaques.30,34 However, 
after receiving aducanumab medication, these mice 
did not exhibit any improvement in their cognition or 
behavior.30

The US Food and Drug Administration (FDA) 
authorized aducanumab as the first disease-modifying 
therapy for AD in June 2021.35 Mild dementia and 
cognitive impairment were treated with aducanumab, 
and the positive advance in the synthesis of aducanumab 
is regarded as groundbreaking progress in the treatment 
of AD.36 Aducanumab slows cognitive decline in mild 
or prodromal AD as judged by the Mini-Mental State 
Examination (MMSE) and Clinical Dementia Rating-
Sum of Boxes (CDR-SB) scores by binding to amyloid 
plaques and the amyloid-β oligomer and inducing 
amyloid clearance.13

Discussion
Aducanumab medication produced positive results 
in a phase Ib double-blind, randomized, and placebo-
controlled study, and it was found to be beneficial for 
AD-related mild cognitive impairment (MCI) or mild 
AD dementia.13 As a result, phase III clinical studies for 
aducanumab were initiated in 2015.37 According to a 
study containing 196 patients with AD, amyloid plaques 
reduced and gradually decreased in clinical parameters 

in moderate or prodromal AD using aducanumab.13 
Aducanumab also showed considerable efficacy on 
clinical and biomarker results, a favorable safety and 
tolerability outline.38 The negative effect of removing 
amyloid, known as ARIAs, was dose-dependent in the 
group receiving aducanumab. Being the most solid genetic 
risk factor for delayed AD, APOE4 carriers experienced 
ARIAs more frequently than non-carriers,39 which was 
a key safety result and should support the additional 
use of aducanumab for AD treatment.40 Recent notable 
findings from a phase III trial using aducanumab showed 
the drug’s small but highest efficacy, providing crucial 
amyloid confirmation as a therapeutic target.41

In phase Ib, IV, and III studies, aducanumab has been 
found to be an effective treatment for reducing amyloid 
plaques which is likely related to the dose and length of 
treatment.42 The investigations of 803 patients (Emerge) 
and 945 patients (Engage) in the 2018 trial were different, 
and the results were not always consistent.13 These studies 
revealed that aducanumab was applied positively in the 
Emerge group and negatively in the Engage group.13,43

Fortunately, several follow-up studies involving the 
Emerge and Engage groups revealed that aducanumab-
treated individuals in the Engage group have a modest drop 
in the CDR-SB parallel to the Emerge group alterations 
(Table 1).13 Although inconsistent results were observed 
in these investigations regarding cognitive outcomes, the 
trials demonstrated exceptional dose-dependent amyloid 
elimination in both treatments (Table 1).13

Conclusions
Since 2005, 101 trials examining mAbs in cases with MCI 
or AD have been registered, and data are accessible from 
50 trials comprising about 18 000 people.48 The results of a 
recent meta-analysis revealed that there is still uncertainty 
regarding the risk-benefit sketch of mAbs. Clarifying how 
amyloid affects cognitive decline, supplying information 
on treatment response rates, and accounting for small 
clinically significant differences should be the main goals 
of future research. 

Clarifying whether eliminating the amyloid burden 
has an impact on the development of cognitive decline 
should be the main goal of mAb research, along with 

Table 1. Clinical Trials of a Immunotherapy for the Treatment of AD 

Type of Agent Period Main Efficiency Measures Other Results References 

Bapineuzumab, 78 DAD ADASCog11 DS, NTB, CDR-SB Vandenberghe et al44

Aducanumab, 78 CDR-SB ADCS-ADL-MC, MMSE, ADAS-Cog Emerge study45

Aducanumab, 78 CDR-SB ADCS-ADL-MCI, MMSE, ADAS-Cog Emerge study 45

Aducanumab, 78 CDR-SB ADCS-ADL-MCI, MMSE, ADAS-Cog Engage study45

Aducanumab, 78 CDR-SB ADCS-ADL-MC, MMSE, ADAS-Cog Engage study 45

Crenezumab 100 CDR-SB ADCS- iADL, ADCS-ADL, ADAS-Cog, CDR-GS, MMSE CREAD1 study 46

Crenezumab 100 CDR-SB iADL, ADCS- ADCS-ADL, ADAS-Cog, CDR-GS, MMSE CREAD2 study 47

Note. A: Amyloid; AD: Alzheimer’s disease; DAD: Disability assessment for dementia; ADAS-Cog: Alzheimer’s disease assessment scale-Cognitive subscale; DS: 
Dependence scale; NTB: Neuropsychological test battery; CDR-SB: Clinical dementia rating-Sum of boxes; ADCS-ADL: Alzheimer’s Disease Cooperative Study– 
Activities of Daily Living; MCI: Mild cognitive impairment; MMSE: Mini‐mental state examination; CDR-GS: Clinical dementia rate-Global score; FAQ: Functional 
activities questionnaire; MMSE: Mini-mental state examination.
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providing information on treatment response rates that 
take the minimal clinically important difference into 
account. This is especially important given that the target 
demographic is trending toward those who are at an 
earlier stage of the disease on the premise that eliminating 
plaques from a brain that is still largely intact can have 
a greater clinical impact. Since the implementation of 
mAbs is still connected with a significantly increased 
risk of ARIA, even in the most recently developed ones, 
research on these medications should also concentrate on 
evaluating the potential long-term effects of ARIA events 
and looking into potential elements envisaging their 
commencement.
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